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Abstract


The proliferation of public computer networks makes encryption a mandatory layer of computer security for protecting corporate or personal information.  Despite breakthroughs in technology that places greater computing power in the hands of those whom would attack encrypted information, US regulations dating from 1976 prohibit the use of strong encryption.  Cryptographers have speculated that a specialized machine could crack encrypted files in a matter of seconds1.  This project is a step towards confirming that fear using off-the-shelf components while allowing features such as point-and-click interface and algorithm agility.
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I. Introduction


The Data Encryption Standard (DES), known as the Data Encryption Algorithm (DEA) by ANSI and the DEA-1 by the ISO, has been a worldwide standard for over 20 years.  When DES was adopted as a federal standard in 1976 it already faced criticism as being watered-down and weak.  The original proposals for DES called for a 112-bit key, which the National Security Agency (NSA) reduced to 56-bits. In addition, exporting products that uses encryption stronger than 40-bits was made a federal crime.  DES still provided adequate security from key guessing attacks that utilized 1970's technology.  Technology has changed since then, but the standard has not.  


Cryptographers have long speculated that it would be possible to build a computer that tries all DES keys, known as a brute-force attack, in a short amount of time and with a cost of less than one million dollars1.  That cost is quite affordable to governments and medium or larger businesses.  Still, DES remains the standard and exporting encryption stronger than 40-bits remains a crime.  


The goal of this Major Qualifying Project (MQP) is to design and build a proof-of-concept DES brute-force attack machine.  It will be constructed using Field Programmable Gate Arrays (FPGA) and will be designed to operate both massively parallel and pipelined.  A sub-goal of this project is to show that DES is crackable even by a college undergraduate using off-the-shelf parts and a new standard should be agreed upon.


The final design will consist of rack-mountable boards, each with multiple DES processors, all connected to one Personal Computer (PC) through an International Standard Architecture (ISA) board.  32-bit Windows 95 software will be written to access the processors and to give an intuitive, point-and-click environment for observing and timing the DES processors.


WPI could not obtain the FPGAs required to realize fully this project.  However, the interface for a small-scale example with one or more processors using the full-scale design can be built.  This proof-of-concept computer that can be scaled to thousands of processors demonstrates that the idea works.  In addition, once the cost and speed of one unit of the project is known, it is a linear equation to find the price for any speed desired.

II. System Overview


The purpose of this project was to design a machine capable of performing cryptographic computations far faster than a general-purpose computer can.  Single-purpose processors were designed and optimized to search keyspace for the key used to encrypt a given piece of information.  For greater speed, the computation is divided among a number of processors that all work in parallel towards the same goal.


The processors are in the form of FPGAs that allow the efficiency of single-purpose design with the flexibility of algorithm agility.  Simply modifying the EPROM that programs the FPGAs can change the algorithm.  Thus, a universal brute-force attack machine can use single-purpose processors.  In addition, by merging this project with a previous MQP the algorithm agility could be made automatic and controlled within software.


Using software designed for this project, the number of processors available is counted, and the keyspace is divided among them.  Each processor is then given the plaintext and the corresponding ciphertext and a starting key.  The processors sequentially exhaust the keyspace by encrypting the plaintext and comparing it to the ciphertext.  After the initialization of the processors the host computer is only obligated to occasionally check to see if the processors are have found the correct key.  It would also be wise to inquire what keys have been tried and write that information to a non-volatile source in case of power failure.  Thus the actual computations are hidden from the host computer which is only obligated to check in now and then.


To keep costs down and reliability high a minimum of control signals and wires were used.  It is true that an interrupt would save the host computer the chore of checking to see if the correct key was found.  However, it is assumed that the host computer will be checking on the progress though the keyspace, both for backup purposes and to make sure the processors are still functioning.  Therefore, the check to see if the key was found was simply added to the procedure for key inquiry.


There are two modules in this project: the Personal Computer (PC) interface and the processors.  An Altera Programmable Logic Device (PLD) handles the interface to the host computer through the ISA bus.  The interface can be changed to PCI by simply reprogramming the PLD.  However, due to the small amount of input/output (I/O) the ISA bus should be quite sufficient.  16-bit data transfers are used, which is compatible with all but the oldest PCs.  The PLD handles the PC interface and controls the processors.


The processors are Xilinx 4013 FPGAs programmed with a slightly modified version of code from a Master's Thesis at WPI.  The processors are programmed by an onboard EPROM and are controlled by the PLD.  Each processor is given data by the host computer and handles all of the cryptographic computation.


All data is transmitted to the processors in 16-bit words.  Internal buffers assemble this data in 64-bit blocks and 56-bit keys.  Once given a key, the processor sequentially explores the keyspace, trying every key.  When the correct key is found it sends a signal to the PLD, which informs the host computer upon the new status inquiry.  When informed of completion, the host computer reads the key from the processor that found the solution and then verifies the key in software.


The following figure shows the different modules and the interaction amongst them.
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Figure 1: Overall System Diagram

III. Background


This section is intended to provide the basic information necessary to understand the purpose of this project and the technology used to realize it.  An introduction to cryptography is provided, along with a brief description of DES and FPGAs.

III.1 Cryptography



Information is called plaintext.  Plaintext can be any form of data, including e-mail text, images, and database tables.  The process of concealing the content of a message is encryption.  Encrypted information is ciphertext.  The process of turning ciphertext back into plaintext in decryption.
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Figure 2: Encryption Basics


Cryptographers practice cryptography, the art and science of keeping information secure.  Cryptanalysis, practiced by cryptanalysts, is the art and science of breaking ciphertext, revealing its information.  The science incorporating cryptography and cryptanalysis is cryptology.



The type of cryptography used in this project is symmetric or private-key cryptography.  Like a safe, the algorithm’s structure is well known, but provides security through a key, like a safe’s combination, that protects the contents.  Because this key provides all of the security it must be kept private, thus the term "private-key cryptography".  The algorithm is symmetric because the same key encrypts and decrypts the information.
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Figure 3: Private-Key Encryption

III.2 The DES Algorithm


The most widely used private-key encryption algorithm is DES.  IBM developed DES with help from the NSA, who apparently thought that some of the most cruicial design criteria of DES would never be released to the public1.  DES represents the world's first cryptographic standard and remains the only public algorithm approved by the NSA.  This project uses the DES algorithm but could just as easily use any other algorithm.


There are many different ways an algorithm can encrypt data.  The most common approach in computer applications is block ciphers.  Block ciphers encrypt a standard sized piece, or block, of the data and then move onto the next block.  DES encrypts data in 64-bit blocks.


DES uses keys 56-bits in length.  This allows one to choose from 256, or 72 quadrillion, different keys.  The algorithm is public and has survived decades of government and private scrutiny.  The security of the algorithm rests entirely in the key.


The first stage of DES is a shuffling of bits called the initial permutation, which adds no security and is most likely only a relic of 1970’s 8-bit technology.  Then the 64-bit block is cut into two halves and enters 16 rounds of combining the data with the key thorough a function f.  In each round the key bits are shifted and then 48 bits are selected from the 56 bits of the key.  The right half of the data is expanded to 48 bits by an expansion permutation and XORed with the 48 bits of a key that has been shifted, compressed, “S-box” look-up table permuted, and “P-box” permuted.  These four operations make up function f.  The output of function f is then combined with the left half using another XOR.  The result of these operations becomes the new right half; the old right half becomes the new left half.  These operations are repeated 16 times, making 16 rounds of DES.   After the sixteenth round the two halves are joined and the final permutation, which is the inverse of the initial permutation, completes the algorithm.  For a more detailed description of DES see Applied Cryptography1.
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Figure 4: Data Encryption Standard (DES) – 16 Rounds
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Figure 5: DES f Function

III.2.1 Cryptographic Attacks


The DES algorithm is used to encrypt many credit card transaction, automatic teller machine transactions, and communication of trade secrets between US companies.  Therefore, the strength of DES is extremely important to the US economy.  There are many ways to attack an algorithm.  This project uses the most straightforward attack – the brute-force attack.


A brute-force attack on an encryption algorithm requires one to test every key until the correct key is found.  Encrypting a block of plaintext into a known block of ciphertext, or decrypting a block of ciphertext into a known plaintext are two ways of testing a key.  This is called a known-plaintext attack and requires a piece of information in both plaintext and ciphertext form, which is much easier to obtain than one might think.  An encrypted header from an e-mail message, word processing document, digital image, or compressed file is all that is required.


Having obtained the plaintext and ciphertext, it is a relatively simple procedure to find the key: just try all 72 quadrillion of them.  This can be done on a general-purpose computer, such as a PC or workstation, but would require thousands of computers to find the key in under a month.  One advantage of this method, however, is that the instant the computers complete the attack, they have the ability to start an attack on a new algorithm in a matter of microseconds.

III.3 Field Programmable Gate Arrays


A pipelined Application Specific Integrated Circuit (ASIC) could be designed to try 100 million keys per second - one key per clockcycle at 100MHz.  One thousand of such processors could check all keys in 8.3 days, on average finding the key in half that time.  ASICs are difficult and time-consuming to design and expensive to manufacture.  In addition, a machine built of ASICs would be a single-purpose machine, able only to attack the algorithm is was designed for.


In between the speed of ASICs and the flexibility of software lies the FPGA.  To change the algorithm in an FPGA, one has to change the EPROM that programs the FPGA.  A computer could be designed with multiple EPROMs, each holding a different algorithm, giving the machine flexibility close to that of a general-purpose computer.  The speed of an FPGA processor is not as great as an ASIC, but is much faster than a general-purpose computer and much cheaper.


Some organizations have already used thousands of computers to work simultaneously to attack DES, the most notable and successful being the internet-based organization distrubted.net.  


The Electronic Frontiers Foundation has built a DES cracking machine using 2000 or so ASIC-based processors that can crack DES in a matter of days4.  If the EFF is successful in its goals, DES will no longer be the standard and their machine will be obsolete.  This project, however, will not be obsolete thanks to the flexibility of FPGAs


A cracker based on FPGAs has never been built, at least by anyone who publishes their work.  It would not be as fast as an ASIC based computer, but would be feasible to build in a short period.  It could also be built on a small scale without an enormous initial cost.


To program an FPGA, binary information is loaded onto the chip.  This information can be stored and transmitted from many sources.  In this project an on-board EPROM is used.  The binary file is the compiled form of a program that reconfigures the internal structure of the FPGA for the desired results.  For each encryption algorithm there is a program for the FPGAs, and so there will be a binary file stored somewhere with to which to program the FPGA.

III.4 Industry Standard Architecture bus


The Industry Standard Architecture (ISA) bus was never actually made a standard.  An extension of the IBM PC/AT backplane bus, ISA was made obsolete without ever being officially enacted2.  This section provides some technical information about the ISA bus interface.


ISA allows 8-bit and 16-bit data transfers through IO devices.  The interface is a standard size slot operating at 8.33 MHz with 88 active signals3.  However, only a few of these signals are needed for the interface in this project.  


The simplest way to explain communication through the ISA bus is with graphical depictions of the bus cycles.  There is a read cycle and a write cycle for ISA IO, in which there are a few important signals.  Those signals that are used in this project are as follows2: 
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Figure 6: Input Bus Cycle
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Figure 7: Output Bus Cycle

III.4.1 Signal Definitions


The various signals of the PC/AT ISA bus that are used for the cryptographic system are listed and defined below.

AD0-AD15
The ISA bus uses a 16-bit multiplexed address/data bus for I/O operations.  There can be up to 64k I/O addresses assigned with 16-bit data transfers to each.  There are a total of 20 bits available for addresses, but I/O only uses the first 16 bits.

AEN

The address enable alerts I/O devices that a valid address is on the bus.  After a valid address has been received, the correct I/O device takes control of the remaining bus cycle.

IOR, IOW

The IOR/ and IOW/ active low control signals indicate an I/O read or an I/O write operation.  These signals alert I/O devices as to whether to read data from the but or write data to it.

IV. Implementation


The following is a general block diagram of the modules and data paths used in this project:
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Figure 8: System Block Diagram

IV.1 ISA DES Cracker Module


The DES Cracker module contains a number of Xilinx XC4013E FPGAs and one TMS27C512 EPROM.  The EPROM contains the binary code for configuring the FPGAs.  The EPROM will configure the FPGA to perform DES encryptions while ascending through the keyspace.  The source code for this binary file is located in the appendix.


A more detailed diagram of the DES Cracker module is as follows:
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Figure 9: DES Cracker Module Layout


There are many signals used for communication between the glue logic and the DES Cracker module.  Most are standard I/O communication, but the means to cascade the FPGAs together is not as typical.  CSI and CSO are the signals used to cascade all of the FPGAs together in a Congo-line of sorts.  


CCLK sends a pulse to all chips informing them to change ownership of the ping.  Whatever chip owns the ping outputs a CSO of 1.  Whatever chip reads a CSI of 1 when given a CCLK signal becomes the new owner of the ping.  


The FPGA that owns the ping is ready to read or write when signaled so by IE or OE.  To input the starting key to and FPGA, IE is given a value of 1 and the data is sent down the bus.  While all chips receive and IE of 1, only the owner of the ping will respond and read the new key value.  Likewise, an OE value of 1 commands the ping owner to output the current key value it is working on.


The 16-bit link to the data bus is tristate logic that is used to write ciphertext and plaintext and read and write keys.  The FPGAs remain at high impedance at all other times.  


CS informs all chips that plaintext or ciphertext is being written and that all must receive the data.  This means that all chips in one machine must be working on the same attack, which should not be a practical restraint.


Finally, the signal Done informs the glue logic when the correct key has been found.  Done is 0 when the key has not been found.  When the key is found by a one of the FPGAs that does not own the ping it sets Done to 1.  When the ping is moved to that FPGA Done returns to 0.  This is how the glue logic determines which FPGA found the key.

IV.2 Glue Logic Module


For the DES cracking FPGAs to communicate with the ISA bus, glue logic was required.  The glue logic resides on an Altera EPM5128xxx programmable logic device.  This PLD watches signals on the ISA bus, and when appropriate addresses are sent on the ISA bus, the glue logic allows communication between the host computer and the DES FPGAs.  The following addresses are used for I/O in this project:

Address
Function
r/w
i/o

300h
Configure – write to all chips
write * 4 * 2
plain, cipher

301h
Slide – increment ping
read
xxx0 0000 0000 0000 b

302h
Read/write key from/to ping owner
read/write * 4
current/start key

303h
Status from glue logic
read
xxx0 0000 0000 0000 b

Table 1: System I/O port addresses for ISA Bus


From this table we see that four addresses are used by this project.  Address 300h is used to write to all DES FPGAs at once.  This function is used to write the plaintext and the ciphertext to all the chips.  As can be seen in figure 1 all of the DES FPGAs are cascaded together.  One “ping” is sent down the cascade of FPGAs and whichever chip is the owner of the ping can be written to or read from.  Address 301h is used to increment the ping down the cascade and address 302h is used to write to or read from the chip.  Address 303h is a means to obtain the status of the chips without disturbing the configuration.


Addresses 301h and 303h return status in the form of a 16-bit word.  The word is in the form of 

x1x2x30 0000 0000 0000 b

where x3 is the status bit indicating if the glue logic chip is the current ping owner, x2 indicates if the correct key has been found by one of the chips, and x1 indicates if the correct key has been found by the current ping owner. 

IV.3 ISA Bus Interface Module


When connecting a device to a computer through an ISA bus, two things are needed: an interface card and a buffer to latch the bus signals.  Rather than designing a custom interface, the existing PC(LAB interface was used. PC(LAB is an interface card and breadboard used to teach bus interface design in WPI’s microprocessor course.  The PC(LAB laboratory test unit also consists of some basic I/O devices such as switches, 

LEDs, a speaker and some internal I/O interface circuitry.


To simplify the hardware design and to cut costs, no external buffer chips were used.  The glue logic was programmed to latch addresses on the ALE signal, and the FPGAs were programmed to latch incoming data.

IV.4 Host Computer


Two versions of software were written for this project.  One version is 16-bit DOS software and the other is 32-bit Windows 95 software.  This allows the MQP to run on any PC with an ISA interface and DOS or Windows 95 as the operating system.  Therefore, any PC based on a processor after the 8086 is compatible with this project.  In fact, so little calculation is done by the host computer that an 80286-based PC is more than adequate to run the project.

IV.5 Host Computer Software Interface


Software was written to run on the host computer and interface with the project.  16-bit software was written in Borland Pascal 7 and then translated into 32-bit software in Borland Delphi 3.  The 16-bit software can run on any 286 or later PC running DOS, and the 32-bit software can run on any Windows 95 PC.  The 32-bit software provides an elegant user environment and only required an addition half-hour of programming time to translate it from Pascal.  Windows NT does not allow the low-level access to I/O devices that was used in writing the software.  However, secondary vendors provide solutions that could be used to modify the software to run on a Windows NT computer.


Once the project has been built, powered, and connected to a host computer it is a simple act to run the machine.  The software will initialize all of the FPGAs with the desired plaintext and ciphertext.  Next, the ping is sent down the cascade of FPGAs to count how many there are.  If the ping doesn't return after a specific amount of time then an error is raised.  Next, in a full-scale machine, the keyspace would be automatically divided among the FPGAs and they would start incrementing through the keys.  


In the 32-bit software a low-priority thread would run in the background, checking on the progress of the chips and the status of one chip every ten seconds or so.  The current key of the a chip is recorded every ten seconds for backup purposes incase of a power failure, and also to assure the chip is making proper progress and hasn't failed at some point.  Because DOS is not a multitasking operating system the 16-bit host software would check on the FPGAs as fast as possible.  Finally, if the software finds that a chip has found the correct key then the current key is downloaded from the chip that found it and then verified in software.

IV.6 Development Tools


Many different software tools were implemented in the construction of this project.  A brief description of those tools follows.

IV.6.1 Altera MAX+plus II


The VHDL code for the ISA interface was developed with Altera’s MAX+PLUS2 v8.1 software.  It provides an integrated set of simulation, compiling, and programming tools, which ease development.  In addition, the simulator has explicit knowledge of the architecture used in Altera products and is thus able to detect subtle errors in the generated logic.

IV.6.2 Borland Turbo Pascal 7.0


The 16-bit host computer software was written with Borland’s Turbo Pascal 7.0.  Pascal is an intuitive language and Borland provides an environment that simplifies coding and debugging.  This software can be run on any DOS computer.

IV.6.3 Borland Delphi 3


The 32-bit software for the host computer was written in Borland Delphi 3.0.  The Pascal code was cut and paste into procedures written automatically by Borland's Rapid Application Development (RAD) environment.  This software can be run on any Windows 95 computer.

IV.6.4 Workview Office


The code the Xilinx FPGA runs was originally written in Workview Office.  This software package allows users to compile, synthesize and simulate code.

IV.6.5 Xilinx’s XACT


Xilinx’s XACT tools was used to convert the code from Workview Office into a binary file that was loaded onto an EPROM.  This EPROM then configured the FPGA to perform cryptographic operations.

V. Conclusions


Secure cryptographic standards are mandatory in a world of growing public networks.  The most direct way to prove an algorithm is weak to a sedimentary government is to build a machine to crack it.  Custom designed ASICs provide the greatest performance but also have the greatest cost and least flexibility.  Networks of PCs provide the greatest flexibility but poor performance.  Reconfigurable logic provides the speed required for a brute-force attack, while providing flexibility and lower costs.


Use of reconfigurable logic in the design of a brute-force attack machine is unprecedented, and allows the possibility of a universal brute-force attack machine.  There are a number of popular algorithms that use keys within the reach of million-dollar cracker, and an FPGA based machine could attack them all.


The result of this project is evidence that a flexible brute-force attack machine can designed.  While this project did not incorporate any processors it did demonstrate that IO between such a machine can be accomplished and that powerful software can make operating such a machine simple.


This project was successful in implementing a new design.  The design was partitioned into several modules that allowed simplified debugging and allow upgrading with new technology in the future.  This prototype brings closer the implementation of a full-scale version of this machine.


This project was a success without using a FPGA designed specifically for the task of brute-force attacks.  The functionality of the software was verified and the concept was proven feasible and workable.  The next step is to increase speed and scale, and possibly to add a computer interface for downloading new FPGA code, rather than using on-board EPROMs.

V.1 Problems Encountered


The most significant problem encountered was the non-completion of an FPGA designed specifically for cracking DES.  The original project design used this chip, and the design was much simpler than what was required to use a more standard DES FPGA design.  


One problem that was surprising in scale was the wiring.  The only socket available for the Altera PLD had pins that were 0.1 inches long.  The design was built using wire wrapping, so these tiny pins became a large problem.  Only two wiring mistakes were made, and were caught early, but these tiny pins repeatedly rejected the wires wrapped around them.  Any movement of the socket would cause wires to come loose, so it was duct-taped in place.


Another problem was that the only computer available for testing had an ethernet card at the same address as the project.  This was discovered after the fragile project was in place so the ethernet card was disabled in software, which seemed to fix the conflicts. 

V.2 Suggested Enhancements


The most obvious enhancement is to use an FPGA specifically designed to crack DES.  Such a design would be pipelined to work on multiple keys at once, perhaps trying one key per clock cycle, and would have internal registers to increment through keyspace, rather than being given keys one at a time.  


A second enhancement would be to use printed circuit boards to reduce the tangle of wires used to implement this project.  Use of a printed circuit board would also minimize the interference received by the connections.


Another enhancement would be to design a system to download programs to the FPGAs from the host computer rather than from an on-board EPROM.  This would allow painless algorithm agility to make an almost universal brute-force attack machine.


And finally, the ultimate improvement would be to use 2000 or more processors and set the machine running on a cipher.  As the Electronic Frontiers Foundation has shown, massively parallel machines can crack keys in days.  That ability can also make the machine obsolete just as quickly, while an FPGA-based machine can move on to new challenges.

Appendix

V.3 Appendix A: Glue Logic VHDL Source Code

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity glue_logic is

   port (AD 



: in std_logic_vector(15 downto 0);-- ISA


ALE, n_IOW, n_IOR 

: in std_logic; 


-- ISA


data



: out std_logic_vector(15 downto 0);-- output


CSO, CS, IE, OE, CCLK
: out std_logic;


-- board


CSI, done


: in std_logic); 


-- board

end glue_logic;

architecture communication of glue_logic is

signal port300, port301, port302, port303: std_logic := '0';

signal done_sig, CSO_sig


: std_logic := '0';

signal done_sel



: std_logic;

signal status




: std_logic_vector(15 downto 0);

signal count
: std_logic_vector(12 downto 0) := "0000000000000";

begin

process(ALE)

begin

port300 <= port300 when (ALE = '0') else

   '1' when (AD = "0000001100000000") else '0'; 
-- config

port301 <= port301 when (ALE = '0') else

   '1' when (AD = "0000001100000001") else '0'; 
-- slide

port302 <= port302 when (ALE = '0') else

   '1' when (AD = "0000001100000010") else '0'; 
-- current/start key

port303 <= port303 when (ALE = '0') else

   '1' when (AD = "0000001100000011") else '0'; 
-- status

end process;

CS <= '1' when (port300 = '1') and (n_IOW = '0')

   else '0';

IE <= '1' when ((port300='1') and (n_IOW='0')) or ((port302='1') and (n_IOW='0'))

   else '0';

OE <= '1' when (port302='1') and (n_IOR='0')

   else '0';

data <= AD when (port300 = '1') or ((port302 = '1') and (n_IOW = '1')) else

   status when ((port301 = '1') or (port303 = '1')) else

   "ZZZZZZZZZZZZZZZZ";

Process(port300, port301)

begin

CSO_sig <= '1' when (port300 = '1') or ((CSI='1') and (port301='1') and (n_IOR='0')) or CSO_sig = '1'

   else '0';

end process;

CSO <= CSO_sig;

CCLK <= '1' when (port301 = '1') and (n_IOW = '0')

   else '0';

process(done)

begin

done_sig <= '1' when done = '1' else done_sig;

end process;

done_sel <= '1' when (done_sig = '1' and done = '0') else '0'; 

status <= done_sel & done_sig & CSO_sig & "0000000000000";

end communication;
V.4 Appendix B: Glue Logic Module Design and Chip Pin-Out
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Figure 10: Glue Logic Module Layout
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V.5 Appendix C: Host Computer Software Control - 16-bit

program mqp;

uses crt;

const maxcount = 10;

var

   yes : boolean;

   count : word;

   status : word;

function ask_yn(s : string) : boolean;

var

   c : char;

   done : boolean;

begin

repeat

   begin

   write(s, '? (Y/n) ');

   c := readkey;

   writeln(c);

   done := true;

   if (c = 'y') or (c = 'Y') then ask_yn := true

   else if (c = 'n') or (c = 'N') then ask_yn := false

   else done := false

   end;

   until done;

end;

procedure glue_status(status : word);

begin

writeln('Status: ', status);

if (status and $8000) = 1 then writeln('DES done signal and selected');

if (status and $4000) = 1 then writeln('DES done signal');

if (status and $2000) = 1 then writeln('Ping is home');

if (status and $1fff) <> 0 then writeln('Status count signal is non-zero');

end;

procedure init_chips;

var p1, p2, p3, p4 : word;

var c1, c2, c3, c4 : word;

begin

writeln('Please input the plaintext in the form "$nnnn $nnnn $nnnn $nnnn"');

readln(p1, p2, p3, p4);

writeln('Please input the ciphertext in the form "$nnnn $nnnn $nnnn $nnnn"');

readln(c1, c2, c3, c4);

portw[$0300] := p1;

portw[$0300] := p2;

portw[$0300] := p3;

portw[$0300] := p4;

portw[$0300] := c1;

portw[$0300] := c2;

portw[$0300] := c3;

portw[$0300] := c4;

end;

procedure count_chips;

begin

count := 0;

status := portw[$301];

writeln('The max number of chips supported is ', Maxcount);

while (count < 10) and (status and $2000 = 0) do

   begin

   glue_status(status);

   status := portw[$301];

   inc(count);

   end;

Writeln('There are ', count, ' DES chips connected together.');

end;

procedure run_chips;

var done : boolean;

    c : char;

    k1, k2, k3, k4 : word;

begin

done := false;

while not done do

   begin

   writeln;

   write('Clock ping, Read key, Write key, Status, Quit? ');

   c := readkey;

   writeln(c);

   case c of

      'c', 'C':

         begin

         writeln('Incrementing ping');

         status := portw[$0301];

         glue_status(status);

         end;

      'w', 'W':

         begin

         writeln('Please input the ciphertext in the form "$nnnn $nnnn $nnnn $nnnn"');

         readln(k1, k2, k3, k4);

         portw[$0302] := k1;

         portw[$0302] := k2;

         portw[$0302] := k3;

         portw[$0302] := k4;

         end;

      'r', 'R':

         begin

         status := portw[$0302];

         writeln(status);

         end;

      's', 'S':

         begin

         status := portw[$0303];

         glue_status(status);

         end;

      'q', 'Q':

         done := true;

      end

   end

end;

begin {main}

writeln;

if ask_yn('Inititalize DES chips') then init_chips;

writeln;

if ask_yn('Count number of DES chips') then count_chips;

{assign keys}

{timed updates}

run_chips;

end.

V.6 Appendix D: Host Computer Software Control - 32-bit

unit main;

interface

uses

  Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

  StdCtrls;

const maxcount = 10;

type

  TForm1 = class(TForm)

    Label1: TLabel;

    Label2: TLabel;

    ListBox1: TListBox;

    Button1: TButton;

    StatusButton: TButton;

    ExitButton: TButton;

    Label3: TLabel;

    WriteButton: TButton;

    ReadButton: TButton;

    procedure FormCreate(Sender: TObject);

    procedure Button1Click(Sender: TObject);

    procedure StatusButtonClick(Sender: TObject);

    procedure ExitButtonClick(Sender: TObject);

    procedure WriteButtonClick(Sender: TObject);

    procedure ReadButtonClick(Sender: TObject);

  private

    { Private declarations }

  public

    { Public declarations }

  end;

var

  Form1: TForm1;

  yes : boolean;

  count : word;

  status : word;

implementation

{$R *.DFM}

procedure glue_status(status : word);

begin

form1.listbox1.items.add('Status: ' + inttohex(status, 4));

if (status and $8000) <> 0 then form1.listbox1.items.add('DES done signal and selected');

if (status and $4000) <> 0 then form1.listbox1.items.add('DES done signal');

if (status and $2000) <> 0 then form1.listbox1.items.add('Ping is home');

if (status and $1fff) <> 0 then form1.listbox1.items.add('Status count signal is non-zero');

end;

procedure init_chips;

begin

   asm

   mov dx, $0300

   mov ax, $0000

   out dx, ax

   mov ax, $1111

   out dx, ax

   mov ax, $2222

   out dx, ax

   mov ax, $3333

   out dx, ax

   mov ax, $ffff

   out dx, ax

   mov ax, $eeee

   out dx, ax

   mov ax, $dddd

   out dx, ax

   mov ax, $cccc

   out dx, ax

   end;

form1.label1.caption := 'plaintext = 0x0000111122223333; cipher text = 0xFFFFEEEEDDDDCCCC';

end;

procedure count_chips;

begin

count := 0;

   asm

   mov dx, $0301

   in  ax, dx

   mov status, ax

   end;

glue_status(status);

while (count < maxcount) and (status and $2000 = 0) do

   begin

      asm

      mov dx, $0301

      in  ax, dx

      mov status, ax

      end;

   glue_status(status);

   inc(count);

   end;

form1.label2.caption := 'There are ' + inttostr(count) + ' DES chips connected together.';

end;

procedure TForm1.FormCreate(Sender: TObject);

begin

if messagedlg('Initialize chips with plaintext with 0x0000111122223333 and cipher text with 0xFFFFEEEEDDDDCCCC?',mtConfirmation, [mbyes, mbno], 0) = mryes

then init_chips;

if messagedlg('Count number of chips?',mtConfirmation, [mbyes, mbno], 0) = mryes

then count_chips;

end;

procedure TForm1.Button1Click(Sender: TObject);

begin

form1.listbox1.items.add('* Incrementing ping');

   asm

   mov dx, $0301

   in  ax, dx

   mov status, ax

   end;

glue_status(status);

end;

procedure TForm1.StatusButtonClick(Sender: TObject);

begin

   form1.listbox1.items.add('* Glue logic status');

      asm

      mov dx, $0301

      in  ax, dx

      mov status, ax

      end;

   glue_status(status);

end;

procedure TForm1.ExitButtonClick(Sender: TObject);

begin

if messagedlg('Exit DESC?',mtConfirmation, [mbyes, mbno], 0) = mryes

then close;

end;

procedure TForm1.WriteButtonClick(Sender: TObject);

begin

form1.listbox1.items.add('* Writing 00003333CCCCFFFF to ping holder');

   asm

   mov dx, $0302

   mov ax, $0000

   out dx, ax

   mov ax, $3333

   out dx, ax

   mov ax, $CCCC

   out dx, ax

   mov ax, $FFFF

   out dx, ax

   end

end;

procedure TForm1.ReadButtonClick(Sender: TObject);

begin

form1.listbox1.items.add('* Current key in ping holder is:');

   asm

   mov dx, $0302

   in  ax, dx

   mov status, ax

   end;

form1.listbox1.items.add(inttohex(status, 4));

   asm

   mov dx, $0302

   in  ax, dx

   mov status, ax

   end;

form1.listbox1.items.add(inttohex(status, 4));

   asm

   mov dx, $0302

   in  ax, dx

   mov status, ax

   end;

form1.listbox1.items.add(inttohex(status, 4));

   asm

   mov dx, $0302

   in  ax, dx

   mov status, ax

   end;

form1.listbox1.items.add(inttohex(status, 4));

end;

{assign keys and divide work}

{timed updates - done?}

{graphical chip interface}

end.
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